Norway


Multiple features that ensure and scalability

Inside physical boundaries controlled by or on behalf of Google, all scheduled production workloads are initialized with a certificate that asserts their identity. These credentials are securely delivered to the workloads. When a workload is involved in an ALTS handshake, it verifies the remote peer identity and certificate. To further increase security, all Google certificates have a relatively short lifespan.

ALTS has a flexible model that works for different types of entities on the network. Entities can be physical machines, containerized workloads, and even human users to whom certificates can be provisioned.

ALTS provides a handshake protocol, which is a Diffie-Hellman (DH) based authenticated key exchange protocol that Google developed and implemented. At the end of a handshake, ALTS provides applications with an authenticated remote peer identity, which can be used to enforce fine-grained policies at the application layer.

ALTS ensures the integrity of Google traffic is protected, and encrypted as needed.

After a handshake is complete and the client and server negotiate the necessary shared secrets, ALTS secures RPC traffic by forcing integrity, and optional encryption, using the negotiated shared secrets. We support multiple protocols for integrity guarantees, e.g., AES-GMAC and AES-VMAC with 8-bit keys. Whenever traffic leaves a physical boundary controlled by or on behalf of Google, e.g., in transit over WAN between datacenters, all protocols are upgraded automatically to provide encryption as well as integrity guarantees. In this case, we use the AES-GCM and AES-VCM protocols with 128-bit keys.

In summary, ALTS is widely used in Google’s infrastructure to provide -to- authentication and integrity, with optional encryption for all Google RPC traffic. For more information about ALTS, please read our whitepaper, “Application Layer Transport Security.”



Source link

No tags for this post.

LEAVE A REPLY

Please enter your comment!
Please enter your name here